Feature Extraction based Face Recognition, Gender and Age Classification

نویسندگان

  • Ramesha K
  • K B Raja
چکیده

The face recognition system with large sets of training sets for personal identification normally attains good accuracy. In this paper, we proposed Feature Extraction based Face Recognition, Gender and Age Classification (FEBFRGAC) algorithm with only small training sets and it yields good results even with one image per person. This process involves three stages: Pre-processing, Feature Extraction and Classification. The geometric features of facial images like eyes, nose, mouth etc. are located by using Canny edge operator and face recognition is performed. Based on the texture and shape information gender and age classification is done using Posteriori Class Probability and Artificial Neural Network respectively. It is observed that the face recognition is 100%, the gender and age classification is around 98% and 94% respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Face Image Analysis using AAM, Gabor, LBP and WD features for Gender, Age, Expression and Ethnicity Classification

The growth in electronic transactions and human machine interactions rely on the information such as gender, age, expression and ethnicity provided by the face image. In order to obtain these information, feature extraction plays a major role. In this paper, retrieval of age, gender, expression and race information from an individual face image is analysed using different feature extraction met...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010